

## YIDYA BHAWAN, BALIKA YIDYAPITH

## Shakti Utthan Ashram, Lakhisarai-811311(Bihar) (Affiliated to CBSE up to +2 Level)

CLASS: X SUBJECT: MATHEMATICS DATE: 10.04.2021

## Real Numbers Class 10 Notes: Chapter 1

Method of Finding HCF

H.C.F can be found using two methods – Prime factorisation and Euclid's division algorithm.

- Prime Factorisation:
  - Given two numbers, we express both of them as products of their respective prime factors. Then, we select the prime factors that are common to both the numbers
  - Example To find the H.C.F of 20 and 24  $20=2\times2\times5$  and  $24=2\times2\times2\times3$
  - The factor common to 20 and 24 is  $2\times2$ , which is 4, which in turn is the H.C.F of 20 and 24.
- Euclid's Division Algorithm:
  - It is the repeated use of Euclid's division lemma to find the H.C.F of two numbers.
  - Example: To find the HCF of 18 and 30 Finding the HCF of 18 and 30
  - The required HCF is **6**.

**Revisiting Irrational Numbers** 

**Irrational Numbers** 

Any number that cannot be expressed in the form of p/q (where p and q are integers and  $q\neq 0$ .) is an irrational number. Examples  $\sqrt{2}$ , $\pi$ , e and so on.

Number theory: Interesting results

- If a number p (a prime number) divides a<sub>2</sub>, then p divides a. Example: 3 divides 6<sub>2</sub> i.e 36, which implies that 3 divides 6.
- The sum or difference of a rational and an irrational number is irrational
- The product and quotient of a non-zero rational and irrational number are irrational.
- $\sqrt{p}$  is irrational when 'p' is a prime. For example, 7 is a prime number and  $\sqrt{7}$  is irrational. The above statement can be proved by the method of "Proof by contradiction".

**Proof by Contradiction** 

In the method of contradiction, to check whether a statement is TRUE

- (i) We assume that the given statement is TRUE.
- (ii) We arrive at some result which contradicts our assumption, thereby proving the contrary.

Eg: Prove that  $\sqrt{7}$  is irrational.

Assumption:  $\sqrt{7}$  is rational.

Since it is rational  $\sqrt{7}$  can be expressed as

 $\sqrt{7}$  = a/b, where a and b are co-prime Integers, b  $\neq$  0.

On squaring,  $a^2/b^2=7$ 

$$\Rightarrow a^2 = 7b^2$$

Hence, 7 divides a. Then, there exists a number c such that a=7c.

Then, 
$$a^2 = 49c^2$$
.

Hence, 
$$7b^2 = 49c^2$$
 or  $b^2 = 7c^2$ 

Hence 7 divides b.

Since 7 is a common factor for both a and b,

it contradicts our assumption that a and b are co-prime integers.

Hence, our initial assumption that  $\sqrt{7}$  is rational is wrong. Therefore,  $\sqrt{7}$  is irrational.